Ben
Engineer, GBC
library(help = "graphics")
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
---|---|---|---|---|---|
1 | 5.10 | 3.50 | 1.40 | 0.20 | setosa |
2 | 4.90 | 3.00 | 1.40 | 0.20 | setosa |
3 | 4.70 | 3.20 | 1.30 | 0.20 | setosa |
4 | 4.60 | 3.10 | 1.50 | 0.20 | setosa |
5 | 5.00 | 3.60 | 1.40 | 0.20 | setosa |
6 | 5.40 | 3.90 | 1.70 | 0.40 | setosa |
7 | 4.60 | 3.40 | 1.40 | 0.30 | setosa |
8 | 5.00 | 3.40 | 1.50 | 0.20 | setosa |
9 | 4.40 | 2.90 | 1.40 | 0.20 | setosa |
10 | 4.90 | 3.10 | 1.50 | 0.10 | setosa |
11 | 5.40 | 3.70 | 1.50 | 0.20 | setosa |
12 | 4.80 | 3.40 | 1.60 | 0.20 | setosa |
13 | 4.80 | 3.00 | 1.40 | 0.10 | setosa |
14 | 4.30 | 3.00 | 1.10 | 0.10 | setosa |
15 | 5.80 | 4.00 | 1.20 | 0.20 | setosa |
16 | 5.70 | 4.40 | 1.50 | 0.40 | setosa |
17 | 5.40 | 3.90 | 1.30 | 0.40 | setosa |
18 | 5.10 | 3.50 | 1.40 | 0.30 | setosa |
19 | 5.70 | 3.80 | 1.70 | 0.30 | setosa |
20 | 5.10 | 3.80 | 1.50 | 0.30 | setosa |
21 | 5.40 | 3.40 | 1.70 | 0.20 | setosa |
22 | 5.10 | 3.70 | 1.50 | 0.40 | setosa |
23 | 4.60 | 3.60 | 1.00 | 0.20 | setosa |
24 | 5.10 | 3.30 | 1.70 | 0.50 | setosa |
25 | 4.80 | 3.40 | 1.90 | 0.20 | setosa |
26 | 5.00 | 3.00 | 1.60 | 0.20 | setosa |
27 | 5.00 | 3.40 | 1.60 | 0.40 | setosa |
28 | 5.20 | 3.50 | 1.50 | 0.20 | setosa |
29 | 5.20 | 3.40 | 1.40 | 0.20 | setosa |
30 | 4.70 | 3.20 | 1.60 | 0.20 | setosa |
31 | 4.80 | 3.10 | 1.60 | 0.20 | setosa |
32 | 5.40 | 3.40 | 1.50 | 0.40 | setosa |
33 | 5.20 | 4.10 | 1.50 | 0.10 | setosa |
34 | 5.50 | 4.20 | 1.40 | 0.20 | setosa |
35 | 4.90 | 3.10 | 1.50 | 0.20 | setosa |
36 | 5.00 | 3.20 | 1.20 | 0.20 | setosa |
37 | 5.50 | 3.50 | 1.30 | 0.20 | setosa |
38 | 4.90 | 3.60 | 1.40 | 0.10 | setosa |
39 | 4.40 | 3.00 | 1.30 | 0.20 | setosa |
40 | 5.10 | 3.40 | 1.50 | 0.20 | setosa |
41 | 5.00 | 3.50 | 1.30 | 0.30 | setosa |
42 | 4.50 | 2.30 | 1.30 | 0.30 | setosa |
43 | 4.40 | 3.20 | 1.30 | 0.20 | setosa |
44 | 5.00 | 3.50 | 1.60 | 0.60 | setosa |
45 | 5.10 | 3.80 | 1.90 | 0.40 | setosa |
46 | 4.80 | 3.00 | 1.40 | 0.30 | setosa |
47 | 5.10 | 3.80 | 1.60 | 0.20 | setosa |
48 | 4.60 | 3.20 | 1.40 | 0.20 | setosa |
49 | 5.30 | 3.70 | 1.50 | 0.20 | setosa |
50 | 5.00 | 3.30 | 1.40 | 0.20 | setosa |
51 | 7.00 | 3.20 | 4.70 | 1.40 | versicolor |
52 | 6.40 | 3.20 | 4.50 | 1.50 | versicolor |
53 | 6.90 | 3.10 | 4.90 | 1.50 | versicolor |
54 | 5.50 | 2.30 | 4.00 | 1.30 | versicolor |
55 | 6.50 | 2.80 | 4.60 | 1.50 | versicolor |
56 | 5.70 | 2.80 | 4.50 | 1.30 | versicolor |
57 | 6.30 | 3.30 | 4.70 | 1.60 | versicolor |
58 | 4.90 | 2.40 | 3.30 | 1.00 | versicolor |
59 | 6.60 | 2.90 | 4.60 | 1.30 | versicolor |
60 | 5.20 | 2.70 | 3.90 | 1.40 | versicolor |
61 | 5.00 | 2.00 | 3.50 | 1.00 | versicolor |
62 | 5.90 | 3.00 | 4.20 | 1.50 | versicolor |
63 | 6.00 | 2.20 | 4.00 | 1.00 | versicolor |
64 | 6.10 | 2.90 | 4.70 | 1.40 | versicolor |
65 | 5.60 | 2.90 | 3.60 | 1.30 | versicolor |
66 | 6.70 | 3.10 | 4.40 | 1.40 | versicolor |
67 | 5.60 | 3.00 | 4.50 | 1.50 | versicolor |
68 | 5.80 | 2.70 | 4.10 | 1.00 | versicolor |
69 | 6.20 | 2.20 | 4.50 | 1.50 | versicolor |
70 | 5.60 | 2.50 | 3.90 | 1.10 | versicolor |
71 | 5.90 | 3.20 | 4.80 | 1.80 | versicolor |
72 | 6.10 | 2.80 | 4.00 | 1.30 | versicolor |
73 | 6.30 | 2.50 | 4.90 | 1.50 | versicolor |
74 | 6.10 | 2.80 | 4.70 | 1.20 | versicolor |
75 | 6.40 | 2.90 | 4.30 | 1.30 | versicolor |
76 | 6.60 | 3.00 | 4.40 | 1.40 | versicolor |
77 | 6.80 | 2.80 | 4.80 | 1.40 | versicolor |
78 | 6.70 | 3.00 | 5.00 | 1.70 | versicolor |
79 | 6.00 | 2.90 | 4.50 | 1.50 | versicolor |
80 | 5.70 | 2.60 | 3.50 | 1.00 | versicolor |
81 | 5.50 | 2.40 | 3.80 | 1.10 | versicolor |
82 | 5.50 | 2.40 | 3.70 | 1.00 | versicolor |
83 | 5.80 | 2.70 | 3.90 | 1.20 | versicolor |
84 | 6.00 | 2.70 | 5.10 | 1.60 | versicolor |
85 | 5.40 | 3.00 | 4.50 | 1.50 | versicolor |
86 | 6.00 | 3.40 | 4.50 | 1.60 | versicolor |
87 | 6.70 | 3.10 | 4.70 | 1.50 | versicolor |
88 | 6.30 | 2.30 | 4.40 | 1.30 | versicolor |
89 | 5.60 | 3.00 | 4.10 | 1.30 | versicolor |
90 | 5.50 | 2.50 | 4.00 | 1.30 | versicolor |
91 | 5.50 | 2.60 | 4.40 | 1.20 | versicolor |
92 | 6.10 | 3.00 | 4.60 | 1.40 | versicolor |
93 | 5.80 | 2.60 | 4.00 | 1.20 | versicolor |
94 | 5.00 | 2.30 | 3.30 | 1.00 | versicolor |
95 | 5.60 | 2.70 | 4.20 | 1.30 | versicolor |
96 | 5.70 | 3.00 | 4.20 | 1.20 | versicolor |
97 | 5.70 | 2.90 | 4.20 | 1.30 | versicolor |
98 | 6.20 | 2.90 | 4.30 | 1.30 | versicolor |
99 | 5.10 | 2.50 | 3.00 | 1.10 | versicolor |
100 | 5.70 | 2.80 | 4.10 | 1.30 | versicolor |
101 | 6.30 | 3.30 | 6.00 | 2.50 | virginica |
102 | 5.80 | 2.70 | 5.10 | 1.90 | virginica |
103 | 7.10 | 3.00 | 5.90 | 2.10 | virginica |
104 | 6.30 | 2.90 | 5.60 | 1.80 | virginica |
105 | 6.50 | 3.00 | 5.80 | 2.20 | virginica |
106 | 7.60 | 3.00 | 6.60 | 2.10 | virginica |
107 | 4.90 | 2.50 | 4.50 | 1.70 | virginica |
108 | 7.30 | 2.90 | 6.30 | 1.80 | virginica |
109 | 6.70 | 2.50 | 5.80 | 1.80 | virginica |
110 | 7.20 | 3.60 | 6.10 | 2.50 | virginica |
111 | 6.50 | 3.20 | 5.10 | 2.00 | virginica |
112 | 6.40 | 2.70 | 5.30 | 1.90 | virginica |
113 | 6.80 | 3.00 | 5.50 | 2.10 | virginica |
114 | 5.70 | 2.50 | 5.00 | 2.00 | virginica |
115 | 5.80 | 2.80 | 5.10 | 2.40 | virginica |
116 | 6.40 | 3.20 | 5.30 | 2.30 | virginica |
117 | 6.50 | 3.00 | 5.50 | 1.80 | virginica |
118 | 7.70 | 3.80 | 6.70 | 2.20 | virginica |
119 | 7.70 | 2.60 | 6.90 | 2.30 | virginica |
120 | 6.00 | 2.20 | 5.00 | 1.50 | virginica |
121 | 6.90 | 3.20 | 5.70 | 2.30 | virginica |
122 | 5.60 | 2.80 | 4.90 | 2.00 | virginica |
123 | 7.70 | 2.80 | 6.70 | 2.00 | virginica |
124 | 6.30 | 2.70 | 4.90 | 1.80 | virginica |
125 | 6.70 | 3.30 | 5.70 | 2.10 | virginica |
126 | 7.20 | 3.20 | 6.00 | 1.80 | virginica |
127 | 6.20 | 2.80 | 4.80 | 1.80 | virginica |
128 | 6.10 | 3.00 | 4.90 | 1.80 | virginica |
129 | 6.40 | 2.80 | 5.60 | 2.10 | virginica |
130 | 7.20 | 3.00 | 5.80 | 1.60 | virginica |
131 | 7.40 | 2.80 | 6.10 | 1.90 | virginica |
132 | 7.90 | 3.80 | 6.40 | 2.00 | virginica |
133 | 6.40 | 2.80 | 5.60 | 2.20 | virginica |
134 | 6.30 | 2.80 | 5.10 | 1.50 | virginica |
135 | 6.10 | 2.60 | 5.60 | 1.40 | virginica |
136 | 7.70 | 3.00 | 6.10 | 2.30 | virginica |
137 | 6.30 | 3.40 | 5.60 | 2.40 | virginica |
138 | 6.40 | 3.10 | 5.50 | 1.80 | virginica |
139 | 6.00 | 3.00 | 4.80 | 1.80 | virginica |
140 | 6.90 | 3.10 | 5.40 | 2.10 | virginica |
141 | 6.70 | 3.10 | 5.60 | 2.40 | virginica |
142 | 6.90 | 3.10 | 5.10 | 2.30 | virginica |
143 | 5.80 | 2.70 | 5.10 | 1.90 | virginica |
144 | 6.80 | 3.20 | 5.90 | 2.30 | virginica |
145 | 6.70 | 3.30 | 5.70 | 2.50 | virginica |
146 | 6.70 | 3.00 | 5.20 | 2.30 | virginica |
147 | 6.30 | 2.50 | 5.00 | 1.90 | virginica |
148 | 6.50 | 3.00 | 5.20 | 2.00 | virginica |
149 | 6.20 | 3.40 | 5.40 | 2.30 | virginica |
150 | 5.90 | 3.00 | 5.10 | 1.80 | virginica |
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## 7 10 18
## 8 10 26
## 9 10 34
## 10 11 17
## 11 11 28
## 12 12 14
## 13 12 20
## 14 12 24
## 15 12 28
## 16 13 26
## 17 13 34
## 18 13 34
## 19 13 46
## 20 14 26
## 21 14 36
## 22 14 60
## 23 14 80
## 24 15 20
## 25 15 26
## 26 15 54
## 27 16 32
## 28 16 40
## 29 17 32
## 30 17 40
## 31 17 50
## 32 18 42
## 33 18 56
## 34 18 76
## 35 18 84
## 36 19 36
## 37 19 46
## 38 19 68
## 39 20 32
## 40 20 48
## 41 20 52
## 42 20 56
## 43 20 64
## 44 22 66
## 45 23 54
## 46 24 70
## 47 24 92
## 48 24 93
## 49 24 120
## 50 25 85
plot(y~x,data)
趨勢
比較、組成
分佈
plot(sin(seq(0,2*pi,1/50)),type='l')
消費者物價指數:主計總處統計專區
data(salary,package='DSC2014Tutorial')
year | salary | cpi | |
---|---|---|---|
1 | 69 | 8843 | 55.61 |
2 | 70 | 10677 | 60.67 |
3 | 71 | 11472 | 61.83 |
4 | 72 | 12122 | 62.17 |
5 | 73 | 13409 | 62.64 |
6 | 74 | 13980 | 62.16 |
7 | 75 | 15118 | 63.41 |
8 | 76 | 16496 | 63.69 |
9 | 77 | 18399 | 65.12 |
10 | 78 | 21247 | 67.56 |
11 | 79 | 24317 | 70.21 |
12 | 80 | 26881 | 73.59 |
13 | 81 | 29449 | 75.87 |
14 | 82 | 31708 | 78.21 |
15 | 83 | 33661 | 81.25 |
16 | 84 | 35389 | 84.69 |
17 | 85 | 36699 | 87.40 |
18 | 86 | 38489 | 86.94 |
19 | 87 | 39673 | 90.34 |
20 | 88 | 40842 | 89.53 |
21 | 89 | 41861 | 91.55 |
22 | 90 | 41960 | 90.51 |
23 | 91 | 41530 | 90.00 |
24 | 92 | 42065 | 89.58 |
25 | 93 | 42680 | 90.95 |
26 | 94 | 43159 | 93.23 |
27 | 95 | 43488 | 93.45 |
28 | 96 | 44392 | 97.94 |
29 | 97 | 44367 | 99.83 |
30 | 98 | 42182 | 98.22 |
31 | 99 | 44359 | 99.71 |
32 | 100 | 45508 | 100.74 |
33 | 101 | 45589 | 102.34 |
34 | 102 | 45664 | 103.04 |
plot(salary_cpi[,1:2],type='l')
salary_cpi$real_wage=salary_cpi$salary/salary_cpi$cpi*100
plot(real_wage~year,salary_cpi,type='l')
x=sample(1:150,50) #從1~150中隨機挑選50個數字
plot(iris[x,5])
y=table(iris[x,5])
barplot(y,horiz=TRUE,las=1)
##
## setosa versicolor virginica
## 13 20 17
barplot(y)
Data: VADeaths
Rural Male | Rural Female | Urban Male | Urban Female | |
---|---|---|---|---|
50-54 | 11.70 | 8.70 | 15.40 | 8.40 |
55-59 | 18.10 | 11.70 | 24.30 | 13.60 |
60-64 | 26.90 | 20.30 | 37.00 | 19.30 |
65-69 | 41.00 | 30.90 | 54.60 | 35.10 |
70-74 | 66.00 | 54.30 | 71.10 | 50.00 |
barplot(VADeaths, beside = TRUE,
legend=rownames(VADeaths))
barplot(VADeaths,
legend=rownames(VADeaths))
##
## setosa versicolor virginica
## 13 20 17
pie(y)
library(xts)
a=order(salary_2013$每人每月薪資)
salary_news=matrix(salary_2013$每人每月薪資[c(head(a,3),tail(a,3))],ncol = 6)
colnames(salary_news)=salary_2013$行業[c(head(a,3),tail(a,3))]
par(family='STKaiti') #Only for Mac!!!
mp=barplot(salary_news,col='dodgerblue4') #x軸座標
text(mp,10000,salary_news,col='gold') #標註薪資
mp=barplot(salary_news,xaxt='n',col='dodgerblue4')
text(mp,-10000,colnames(salary_news),xpd=TRUE,srt=20,cex=1.5)
plot(iris[,3:4])
plot(Petal.Width~Petal.Length,data=iris)
plot(iris[,1:3])
plot(~Sepal.Length+Sepal.Width+Petal.Length,data=iris)
plot(factor,number) #Don't Run!
plot(iris[,5],iris[,1])
boxplot(iris[,1]~iris[,5])
boxplot(Sepal.Length~Species,data=iris)
boxplot(iris[,1:2])
hist(iris[, 1], breaks = 4)
點
線
文字說明
座標軸
real_wage=matrix(salary_cpi$real_wage,ncol=34)
colnames(real_wage)=salary_cpi[,1]
mp=barplot(real_wage,ylim=c(-20000,60000),col='dodgerblue4',ylab='TWD',xlab='year')
ratio=diff(salary_cpi$real_wage)/salary_cpi$real_wage[1:33] #實質薪資成長率
lines(mp[2:34],ratio*500000,typ='o',pch=20,lwd=3,col=2)
#畫上實質薪資成長率,為配合原圖的scale,乘上500000
axis(4,seq(-20000,60000,10000),labels=paste(seq(-4,12,2),'%',sep = ""),col=2)
# 加上右邊Y軸,須考慮比例
legend("bottomleft",c('實質薪資','實質薪資成長率'),bty='n',
text.col=c('dodgerblue4','red'),
col=c('dodgerblue4','red'),pch=c(15,20))# 加上圖例說明
mtext(side=3,'成長率',adj=1) # 在plot的周邊加上說明
locator(n=1)
x=seq(-pi,pi,pi/1000);y=sin(x)/abs(x)
plot(x,y)
text(0,0,expression(over(cos(x)%.%
sin(x),abs(x))))
f1 <- function(x) {
y1 <- 3 * sqrt(1 - (x/7)^2)
y2 <- -3 * sqrt(1 - (x/7)^2)
y <- c(y1, y2)
d <- data.frame(x = x, y = y)
d <- d[d$y > -3 * sqrt(33)/7, ]
return(d)
}
x1 <- c(seq(3, 7, 0.001), seq(-7, -3, 0.001))
d1 <- f1(x1)
x2 <- seq(-4, 4, 0.001)
y2 <- abs(x2/2) - (3 * sqrt(33) - 7) * x2^2/112 - 3 + sqrt(1 - (abs(abs(x2) -
2) - 1)^2)
x3 <- c(seq(0.75, 1, 0.001), seq(-1, -0.75, 0.001))
y3 <- 9 - 8 * abs(x3)
x4 <- c(seq(-0.5, -0.75, -0.001), seq(0.75, 0.5, -0.001))
y4 <- 3 * abs(x4) + 0.75
x5 <- seq(-0.5, 0.5, 0.001)
y5 <- rep(2.25, length(x5))
x6 <- c(seq(-3, -1, 0.001), seq(1, 3, 0.001))
y6 <- 6 * sqrt(10)/7 + (1.5 - 0.5 * abs(x6)) * sqrt(abs(abs(x6) - 1)/(abs(x6) -
1)) - 6 * sqrt(10) * sqrt(4 - (abs(x6) - 1)^2)/14
dd = data.frame(x = c(x2, x3, x4, x5, x6), y = c(y2, y3, y4, y5, y6))
d1 = rbind(d1, dd)
plot(d1, asp = 1) # asp: x軸與y軸的比例
text(0, 0, expression(((over(x, 7))^2 * sqrt(over(abs(abs(x) - 3), abs(x) -
3)) + (over(y, 3))^2 * sqrt(over(abs(y^3 - over(sqrt(33), 7)), y^3 - over(sqrt(33),
7))) - 1) %.% (abs(over(x, 2)) - over(3 * sqrt(33) - 7, 122) * x^2 - 3 +
sqrt(1 - (abs(abs(x) - 2) - 1)^2) - y) %.% (9 * sqrt(over(abs((abs(x) -
1) * (abs(x) - over(3, 4))), (1 - abs(x)) * (abs(x) - over(3, 4)))) - 8 *
abs(x) - y))) ## 方程式的上半段
text(0, -0.8, expression((3 * abs(x) + over(3, 4) * sqrt(over(abs((abs(x) -
over(3, 4)) * (abs(x) - over(1, 2))), (over(3, 4) - abs(x)) * (abs(x) -
over(1, 2)))) - y) %.% (over(9, 4) * sqrt(over((x - over(1, 2)) * (x + over(1,
2)), (over(1, 2) - x) * (over(1, 2) + x))) - y) %.% (over(6 * sqrt(10),
7) + over(3 - abs(x), 2) * sqrt(over(abs(abs(x) - 1), abs(x) - 1)) - over(6 *
sqrt(10), 14) * sqrt(4 - (abs(x) - 1)^2) - y) == 0)) ##方程式的下半段
par(...)
colors() #內建的顏色
rainbow(144) #產生彩虹色
palette(rainbow(144)) #將彩虹色設定成預設顏色
colorRampPalette(c('red','green'))(10) #紅綠漸層
data("df_brower", package = "DSC2014Tutorial")
a = order(df[, 2])
plot(x = df[a, 2], y = df[a, 1], cex = 0.1, asp = 1,
col=colorRampPalette(c("darkgreen", "lightgreen"))(10000))
plot(iris[, 3:4], bty = "n", axes = FALSE)
## 利用rect將背景顏色換掉 par('usr'):繪圖範圍的座標
rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], border = "grey89",
col = "grey89")
grid(col = "white", lty = 1) ## 加上grid
axis(1, col = "lightgrey") ## 加上X軸
axis(2, col = "lightgrey") ## 加上Y軸
points(iris[, 3:4], pch = 20) ## 最後畫上data
par(mar = c(3, 1, 1, 1))#the number of lines of margin
par(mai = c(3, 1, 1, 1))#margin size specified in inches
par(mfrow=c(3,2))
nf=layout(matrix(c(2,1,0,3), 2, 2), widths=c(3,1), heights=c(1,3))
layout.show(nf)
layout(matrix(c(2, 1, 0, 3), 2, 2), widths = c(3, 1), heights = c(1, 3))
xhist = hist(iris[, 3], plot = FALSE) # get distribution
yhist = hist(iris[, 4], plot = FALSE) # get distribution
par(mar = c(5, 5, 1, 1)) #調整邊界
plot(iris[, 3:4])
par(mar = c(0, 3, 1, 1)) #調整邊界
barplot(xhist$counts, axes = FALSE, space = 0)
par(mar = c(3, 1, 1, 0)) #調整邊界
barplot(yhist$counts, axes = FALSE, space = 0, horiz = TRUE)
調整邊界前
調整邊界後
time_salary=cbind(hours=salary_detail$平均.工時,TWD=salary_detail$每人每月薪資)
rownames(time_salary)=salary_detail$行業
plot(TWD~hours,time_salary)
ind=identify(time_salary,plot=FALSE)
points(time_salary[ind,],pch=20,col='red')
text(time_salary[ind,],rownames(time_salary)[ind],col='dodgerblue',font=2)
layout(matrix(c(1,1,2,3), 2, 2), widths=c(3,6), heights=c(2,2))
plot(TWD~hours,time_salary,xlim=c(100,260),ylim=c(2e4,1.2e5))
points(time_salary[ind,],pch=20,col='red')
text(time_salary[ind,],rownames(time_salary)[ind],pos=1:4,col='dodgerblue',font=2)
mp1=barplot(time_salary[ind,1],ylab='hours')
text(mp1,50,time_salary[ind,1])
barplot(time_salary[ind,2],ylab='TWD')
text(mp1,10000,time_salary[ind,2])
png(file='test.png')
plot(iris[,3:4])
dev.off()
install.packages("wordcloud")
library("wordcloud")
wordcloud(words=c(letters,LETTERS,0:9),freq=seq(1,1000,len=62))
plot_color=c("gray22", "deepskyblue4", "firebrick2", "springgreen4", "orange",'gray50')
palette(plot_color)
layout(matrix(c(3,1,2,1), 2, 2), widths=c(2,2), heights=c(2,2))
par(mar=c(4,4,0,2),cex=1.2)
plot(browser_table[,1:2],lwd=2,ylim=c(0,60),pch=20,type='o')
for (i in 3:7){
lines(browser_table[,c(1,i)],type='o',col=i-1,lwd=2,pch=20)
}
par(mar=c(0,0,0,0.1),cex=1.2)
pie(as.numeric(tail(browser_table,1)[2:7]),col=1:6,labels="")
legend('topleft',legend=colnames(browser_table)[2:7],
text.col=1:6,col=1:6,pch=20,bty='n')
par(mar=c(0,0,0,0),cex=1)
wordcloud(colnames(browser_table)[2:7],tail(browser_table,1)[,2:7]*10000,scale=c(6,1),
ordered.colors = TRUE,colors =1:6) #字不見時,可調整scale